Black Hole Growth in Disk Galaxies Mediated by The Secular Evolution of Short Bars

Min Du (Post-doc at KIAA, PKU)
"National Postdoctoral Program for Innovative Talents" Fellowship
Victor P. Debattista (UClan, UK), Juntai Shen (沈俊太), Luis C. Ho (KIAA, PKU), Peter Erwin (MPE)
Drivers of gas inflows feeding black holes (BHs)

- **Yesterday’s story: Gas-rich major mergers**

- **Challenges:**
 1. 85% AGN hosts have no signature of major merger at $z<1$ (Cisternas et al. 2011);
 2. AGN hosts seems disk-dominated at $z<3$ (Schawinski et al. 2011, Kocevski et al. 2012, Simmons et al. 2012);
 3. Massive BHs exist in disk-dominated galaxies (e.g. Filippenko & Ho 2003; Greene et al. 2010; Simmons et al. 2017)

- Only triggering most luminous quasars and AGNs (e.g., Barnes & Hernquist 1996; Hopkins et al. 2008; Treister et al. 2012)

- **Secular processes:** “bars within bars” (S2B) system and spirals (Shlosman, Frank & Begelman 1989; Hopkins and Quataert 2010; W.-T. Kim & Elmegreen 2017)
Secular processes

- Gas inflows driven by internal non-axisymmetric instabilities.
- The growth of bulge can suppress gas inflows.
- The short inner/nuclear bars should play an important role.

(Hopkins & Quataert 2008)
Basic properties of nuclear/inner bars

- **Common stellar features:** ~1/3 of early-type barred galaxies (e.g. Erwin 2004; Erwin & Sparke 2002; Laine et al. 2002; Erwin 2003, 2004). No clear in late-type.

- **Short:** semi-major axis 0.1-1.3 kpc. Size ratio of inner and outer bars ~ 0.05-0.3, the median value 0.12

- **Generally, rotate faster than its outer counterpart:** driven gas further into the center (Buta & Crocker 1993; Friedli & Martinet 1993; Corsini et al. 2003)

- **Formation mechanism:** the bar instability of a dynamically cold nuclear disk (e.g. Du, Shen & Debattista 2015; Wozniak 2015)

NGC2950 R-band

Outer/primary bar

Inner/nuclear/secondary bar

(Erwin 2008)
I. N-body simulations of S2Bs (Du et al. 2015)

- Initial conditions: exponential stellar disk + unimportant rigid halo
- The dynamical temperature \(\text{Toomre } Q = \frac{\sigma_R \kappa}{3.36 G \Sigma} \) determines the bar and clumpy instabilities of the stellar disk.
- Initial disk: a dynamically cool nuclear disk + a hot outer disk
- Nuclear bars form from the bar instability of nuclear disk.

\[Q < 1 \quad Q \sim 2 \quad Q > 1 \]

Toomre-Q

Hot outer disk

Q<1

Cool nuclear disk

\[R \]
II. A realistic S2B model: similar kinematics to observations (Du et al. 2016, 2017a)

- Velocity dispersion humps perpendicular to inner bars (named as sigma-hollows in de Lorenzo-Caceres et al. 2008)
III. Adding a BH (Du et al. 2017b)

- We used a Plummer sphere of softening radius 2.5 pc to mimic BHs.
- The BH mass grows to 0.2%M_d during $t=300-350$ after the S2B structure has reached a steady state.
- Guard shells around BH are used to reduce the time step of calculation.
- The inner bar can be destroyed quickly by a BH of mass 0.2%M_d.

Guard shells
Shen & Sellwood (2004)

$M_{bh} = 0.2\%M_d$
III. I. Evolution of bar amplitudes

- BH mass range $0.0001\% - 0.3\% M_d$

- The growth of $0.05\% M_d$ BHs can break the equilibrium state of S2B structures.

- BHs of mass $0.2\% M_d$ are likely to destroy any kind of short bars (R~1 kpc) quickly.

The hypothetic picture:

- Dissolution of inner/nuclear bars \rightarrow slow down or even stop BH growth

- The maximum BH mass allowed in the secular evolution $0.002M_d$.
III. II. Mass ratio of BHs and host galaxies

• **Es** and **S/S0 with classical bulges** have larger M_{bh}/M_* ratio (Reine & Volonteri, 2015), because of mergers?

• **S/S0 with pseudo-bulges** and **nearby AGNs** are dominated by the secular evolution: consistent with our predicted maximum M_{bh}/M_* ratio (**0.002**, cyan shaded region).

• **An indirect evidence of that the secular growth of BHs is dominated by inner bar-driven gas inflows.**

Data are adopted from Reine & Volonteri (2015)
III. Robustness of the result

- Verified with a polar-grid code **GALAXY** (Sellwood 2014) and a momentum-conserving treecode **gyrfalcON** (Dehnen 2000, 2014).
- **Single-nuclear barred** models have been tested.
- **The uncertainty of** M_{bh}/M^* **upper limit**: robustness of other non-axisymmetric structures, pre-existing classical bulge
SUMMARY

• Nuclear/inner bars are **fragile** under the dynamical influence of a massive BH.

• The growth of BHs might be self-regulated, thus generating the observed upper limit of $\frac{M_{\text{bh}}}{M^*}$.

• On-going work: the relics of bars destroyed by BHs, bulge?
Thank you!