The IllustrisTNG Project

Lars Hernquist
Harvard University

Gas in Galaxies, Malta
October 6, 2017

Our team:
Shy Genel (CCA), Lars Hernquist (Harvard), Federico Marinacci (MIT),
Jill Naiman (Harvard), Dylan Nelson (MPA), Ruediger Pakmor (HITS),
Annalisa Pillepich (MPIA), Volker Springel (HITS/MPA), Paul Torrey (MIT),
Mark Vogelsberger (MIT), Rainer Weinberger (HITS)
Illustris in one slide

AREPO Code
106.5 Mpc Cosmological Box
Halo Mass Range: < 2×10^{14} Msun
Res: ~ 1 kpc, $\sim 10^8$ Msun

Vogelsberger et al. 2014a, b, Genel et al. 2014,
Sijacki et al. 2015
Illustris Limitations, i.e. issues identified in the Illustris galaxies

1. Too high Cosmic SFRD at z<1
2. Too high galaxy stellar mass function at z=0 at the low & high mass ends
3. Too extended stellar sizes for galaxies < 10^{10} M_{\odot}
4. Spurious ring-like features at z=0
5. Too low halo gas fractions with R500 in haloes > 10^{13.5} M_{\odot}
6. Not well enhanced galaxy color bimodality

Problems mostly related to feedback models

Feedback from stars, supernovae

High BH accretion rates
“quasar mode:” local
thermal feedback

Low BH accretion rates
“radio mode:” non-local
to offset cooling
Issue of AGN radio mode feedback

• Too inhomogeneous spatially, too sporadic in time
• New AGN feedback model:
 – high accretion rates (as before): quasar mode -- thermal energy imparted to gas near BH
 – low accretion rates – BH winds: momentum imparted to gas near BH
• Places two modes on same footing
• Motivated by FR0 radio galaxies (Baldi+2016), red geyser galaxies (Cheung+2016)
FR0 galaxies: Baldi+2016

Red geyser galaxies: Cheung+2016
Shocks are a bit like Donald Trump

Courtesy of Lisa Kewley
IllustrisTNG

• Ingredients:
 – new AGN feedback model (Weinberger+ 2017)
 – refinements to stellar feedback (Pillepich+ 2017)
 – MHD (Marinacci+ 2017)
 – r-process elements in NS-NS mergers (Naiman+ 2017)
 – automated shock-finder (Schaal+ 2016)

• New simulations:
 – TNG50: 50 Mpc box, high resolution (in progress)
 – TNG100: repeat of Illustris, Planck cosmology (complete)
 – TNG300: 300 Mpc box (complete)

• First results: problems with Illustris resolved; see 2017 papers by Genel+, Marinacci+, Naiman+, Nelson+, Pillepich+, Springel+, Vogelsberger+
TNG100: 2×1820^3, \approx same volume, resolution as Illustris; run to $z=0$

TNG50: 2×2160^3, \approx 20 times better mass resolution, \approx 2.5 times better spatial resolution; running, now at $z \approx 0.9$

TNG300: 2×2500, \approx 30 times larger volume; run to $z=0$
Halo, galaxy mass functions in TNG100, TNG300

TNG300: several halos about $10^{15} \, M_{\odot}$, $\sim 100,000$ Milky Way halos
TNG100: g-r galaxy color distribution

L75n1820TNG: centrals only

Blue

Red

M_\star [log M_{\odot}]

(g-r) color [mag]

$\log N_{\text{gal}}$

Median

P[10,90]
TNG100 g-r colors vs. Illustris, SDSS

Nelson et al., arXiv: 1707.03395
Timescales for blue/red transition

Indicates multiple quenching pathways; also morphologies
Blue galaxies, $M_{\text{halo}} \sim 10^{12} - 10^{12.2} M_{\text{solar}}$

Nelson+2017
Red galaxies, $M_{\text{halo}} \sim 10^{12} - 10^{12.2} M_{\text{solar}}$

Nelson+2017 (recall Mina Pak’s poster)
Blue/Red transition with TNG model

- **Multiple quenching mechanisms suggested**
 - many are rapid \(\sim 1 \) Gyr
 - broad tail to longer times \(\sim 4-6 \) Gyrs
- **Relationship to morphology a key test of model**
 - around transition, not all red galaxies spheroidal
 - subsequent evolution to higher masses?
 - currently being investigated, compared to observations by Sandro Tacchella
- **Can track histories of individual galaxies, compare to data for further tests of model**
Example histories of galaxies

Nelson+2017
Matter clustering in TNG300

Dark matter (top), stellar (bottom) density fields; Springel+2017
• Bias of stars to dark matter:
 – scale-dependent
 – evolves with z
 – also for galaxies
 – extends to BAO scales

See Springel+2017
Impact of baryonic processes on matter distribution

Complex evolution with redshift

At $z=0$, dominant effects at <1 Mpc, tail to larger scales

Rough agreement with Eagle
Galaxy clustering relative to data

Generally good agreement between TNG100 & TNG300 and with SDSS.
Galaxy clustering in TNG300 relative to data

Generally good agreement, but red galaxies at stellar masses $\sim 10^{9.5} - 10^{10.5}$ near base of blue/red transition: dust, green valley?
Ongoing/future work

- Unusual galaxies: LSBs (Zhu+), jellyfish (recall Samuel Boussier’s talk)
- Some discrepancies with data already identified
 - not enough cool core clusters (Barnes+) \(\rightarrow\) missing physics?
 - many more tests possible
- TNG50 expected completion in \(~3 – 6\) months
 - mass per stellar particle \(~10^5\) \(M_{\text{solar}}\) \(\rightarrow\) Milky Way studies

Pillepich et al. (2017)
Ongoing/future work

- TNG dataset will be made public ~ 1st half 2018
 - collaborators welcome until then
- Larger volume simulations, e.g. Millennium with gas
- Development of more physical sub-resolution models:
 - SMAUG collaboration with CCA (Simulating Multiscale Astrophysics to Understand Galaxies)