Ionised winds in normal star-forming galaxies in 3D

I-Ting Ho
Max Planck Institute for Astronomy, Heidelberg

Collaboration with:
Joss Bland-Hawthorn (U. Syd)
Lisa Kewley (ANU)
Brent Groves (ANU)
Sarah Leslie (MPIA)
Anne Medling (CalTech)
Michael Dopita (ANU)
Chiaki Kobayashi (U. Hertfordshire)
& the SAMI Galaxy Survey team
\[\phi(L) \]

Galaxy luminosity

theory (CDM-motivated)

\[L^* \sim 3 \times 10^{10} L_\odot \]

SN

observations

AGN
Winds in main-sequence galaxies?

Na D winds in stacked SDSS spectra

- At $z \sim 0$, normal star-forming galaxies could also host winds
- Detected in NaD5890,5896 with stacked SDSS spectra
- Problems:
 - EW(NaD) gets smaller when there is less dust ($\text{Na} \rightarrow \text{Na}^+$)
 - Individual detection requires good sensitivity & right galaxy inclination

Σ_{SFR} increase

$\text{red} \rightarrow \text{black}$

Chen et al. (2010)
Winds in main-sequence galaxies?

- \(\log(M^*/M_\odot) \)
- SFR \([M_\odot \text{ yr}^{-1}]\)

Classical starburst winds

- SDSS
- M82
- NGC1482
- NGC3079
- NGC253
- MW
- Arp220
- M82
- NGC1482
- NGC3079

\(z \approx 0 \) SDSS main sequence

- Elbaz et al. (2007)
- \(z < 0.2 \) (UL)IRGs NaID winds
- Rupke et al. (2005)
The SAMI galaxy survey

- Local IFS survey (z~0.05) w/ 3.9-m Anglo-Australian Telescope
- 13 fiber bundles in 1 deg FOV
- Target sample size: 3,400 galaxies (currently >2,000)
- Early data release (Allen et al. 2015; N=107)
- First data release Aug. 2017, including value added catalog (N~800; Green et al. 2017)
Galaxy main-sequence in 3D

log(SFR) vs log(M*)

courtesy of Scott Croom
Galaxy main-sequence in 3D

courtesy of Scott Croom
• 40 edge-on (i>80 deg), non-AGN (optical line ratios), non-interacting normal star-forming galaxies

• Extra-planar line emission detected in SAMI
Ho et al. (2016)
See also Ho et al. (2014)
Leslie et al. (2017)
Tescari et al. (2017)
Extraplanar line-emitting gas

- Strong disk-halo interaction
- Galactic winds
- Bipolar outflows in cone-like structures
- Shock excited

- Weak disk-halo interaction
- Extended diffuse ionised gas (eDIG)
- Co-rotating with disk
- Photoionisation + extra heating (shock or turbulent)

M82

NGC891 (Hα narrow band)

Hα + [NII]

eDIG

Pildis et al. (1994)
Kinematic asymmetry

Galactic wind

\[V_{\text{gas}} \]

\[V_{\text{gas,flipped}} \]

\[V_{\text{gas}} - V_{\text{gas,flipped}} \]

\[V_{\text{gas}} \]

\[V_{\text{gas,flipped}} \]

\[V_{\text{gas}} - V_{\text{gas,flipped}} \]

SDSS

\[\text{log}(\text{[NII]/H} \alpha) \]

\[\text{log}(\text{[SII]/H} \alpha) \]

\[\text{log}(\text{[OI]/H} \alpha) \]

\[\delta \text{ Dec. [arcsec]} \]

\[\delta \text{ R.A. [arcsec]} \]

Galactic wind and eDIG kinematic asymmetry maps.
Extrapolated velocity dispersion

Galactic wind
σ_{gas} [km/s]

η_{50}: 0.49

eDIG
σ_{gas} [km/s]

η_{50}: 0.34
Wind in normal galaxies at z=0

Ho et al. (2016)
See also Leslie et al. (2017)
Why some are wind-dominated?

✓ High star formation per surface area

Red: wind-dominated
Blue: not wind-dominated

Ho et al. (2016)
Why some are wind-dominated?

✓ Bursty star formation history

Red: wind-dominated
Blue: not wind-dominated

Ho et al. (2016)
Why some are wind-dominated?

✓ Bursty star formation history

Red: wind-dominated
Blue: not wind-dominated

Ho et al. (2016)
Why some are wind-dominated?

✓ Bursty star formation history

Red: wind-dominated
Blue: not wind-dominated

Ho et al. (2016)
Bursty star formation drives winds in FIRE

FIRE simulation

Muratov et al. 2015
Bigiel, Blanc, Emsellem, Escala, Groves, Hughes, Kreckel, Kruijssen, Leroy, Perez, Meidt, Pety, Rosolowsky, Sanchez-Plasquez, Sandstrom, Schinnerer, Schruba, Usero Chevance, Guzman, Herrera, Ho, Hygate, Johnson, Lang, Liu, McElroy, Querejeta, Razza, Rebolledo, Saito, Sliwa, Sun, Utreras, Ward
NGC628 w/ PHANGS collaboration

MUSE Hα 10^4 K(PI: Kreckel; Blanc)

ALMA CO(2-1) 10 - 100K

MUSE 6-point mosaic

resolution 1 arcsec = 50pc
NGC628 w/ PHANGS collaboration

MUSE Hα 10^4 K (PI: Kreckel; Blanc)

ALMA CO(2-1) 10 - 100K

rest wavelength (Å)

Hα line profile examples

blue wing
red wing

MUSE 6-point mosaic

1 arcsec = 50pc
Summary

- Ionised winds commonly seen in normal, present-day main-sequence galaxies

- Even when Σ_{SFR} is below $0.1 \text{M}_\odot/\text{yr}/\text{kpc}^2$

- High Σ_{SFR} and bursty star formation drive “starburst-driven winds”

- Concentration and short timescale of star forming activities are the keys to driving ionised winds