FORMATION AND EVOLUTION OF THE MAGELLANIC SYSTEM

STEPHEN PARDY (STUDENT)
ADVISOR: ELENA D’ONGHIA
COLLABORATOR: ANDREW FOX
Magellanic Stream is the closest example of cold gas accretion.

More gas in Stream than in Clouds and in all other HVCs combined.

Where did it come from? What will happen to it?
Magellanic Stream is the closest example of cold gas accretion.

More gas in Stream than in Clouds and in all other HVCs combined.

Where did it come from? What will happen to it?
Magellanic Stream is the closest example of cold gas accretion.

More gas in Stream than in Clouds and in all other HVCs combined.

Where did it come from? What will happen to it?

Current formation scenario: Stream is gas stripped from SMC during its interaction with LMC.

Besla et al. 2012
Problems:

- Current models under-predict HI mass by factor of 5 and do not include the ionized component. (Models: Besla+2012; HI: Brüns+2005, Nidever+2010; HII: Fox+2015)

- Abundance and velocity measurements show LMC origin of some gas. (Nidever+2008,Richter+2013)
Problems:

- Current models under-predict HI mass by factor of 5 and do not include the ionized component. (Models: Besla+2012; HI: Brüns+2005, Nidever+2010; HII: Fox+2015)

- Abundance and velocity measurements show LMC origin of some gas. (Nidever+2008, Richter+2013)
Problems:

- Current models under-predict HI mass by factor of 5 and do not include the ionized component. (Models: Besla+2012; HI: Brüns+2005, Nidever+2010; HII: Fox+2015)

- Abundance and velocity measurements show LMC origin of some gas. (Nidever+2008, Richter+2013)

We make two targeted changes:

1) Increase total gas mass of Clouds by 2X

2) increase size of SMC and LMC (place more gas outside tidal radius)
Follow simulation setup of Besla+12. Using Gadget NBody+SPH isolated galaxy models:

(1) LMC and SMC interact only with each other for several Gyr

(2) LMC–SMC pair falls into Milky Way

Pardy+2017 (submitted)
Follow simulation setup of Besla+12. Using Gadget NBody+SPH isolated galaxy models:

1. LMC and SMC interact only with each other for several Gyr

2. LMC–SMC pair falls into Milky Way

Pardy+2017 (submitted)
RESULTS PART 1

Can we match the mass?

We see:
Can we match the mass?

We see:

- 4x increase in Stream gas mass \(\sim 4 \times 10^8 \, M_\odot \)
RESULTS PART 1

Can we match the mass?

We see:

- 4x increase in Stream gas mass $\sim 4 \times 10^8 M_\odot$ ✓
- Do not match ionized mass ✗
Can we match the mass?

We see:

- 4x increase in Stream gas mass $\sim 4 \times 10^8 \text{M}_\odot$ ✓
- Do not match ionized mass ✗
- More mass than observed inside Clouds ✗
Can we match the mass?

We see:

- 4x increase in Stream gas mass $\sim 4 \times 10^8 \, M_\odot$ ✔
- Do not match ionized mass ❌
- More mass than observed inside Clouds ❌

Takeaway:

- Increasing mass of Clouds further will cause a larger mismatch between observed and predicted HI mass

This is a problem of efficiency. Our simulations have $\sim 20\%$ of gas stripped, best estimates for Stream is that $\sim 50\%$ of all of the gas from the Clouds has been removed. (see talk by Brianna Smart)
HI data from Nidever+2010

RESULTS PART 2
Results Part 2

- Strip material from LMC
- Match Stream location
- Match density near Clouds

Predict Arm material from LMC

Pardy+2017 (submitted)
Do not match Clouds positions

LMC material not in filament

RESULTS PART 2
Current dwarf-dwarf formation model has problems reproducing the multiple filaments and the mass in the Magellanic Stream.

- Increasing the stripping efficiency from the LMC can pull material into the stream and the leading arm - but not in a long coherent filament as seen in the observations

- A tidal-only model is not efficient enough to strip enough of the material from the Clouds
Current dwarf-dwarf formation model has problems reproducing the multiple filaments and the mass in the Magellanic Stream.

- Increasing the stripping efficiency from the LMC can pull material into the stream and the leading arm - but not in a long coherent filament as seen in the observations

- A tidal-only model is not efficient enough to strip enough of the material from the Clouds

Looking Forward - other methods of stripping material:

- Local outflows (led by collaborators Chad Bustard and Ellen Zweibel at UW Madison)

- Ram pressure stripping (ongoing with collaborator Romeel Davé)
BONUS SLIDES

![Graph showing the relationship between LMC-SMC Mass Ratio and Gas Stripped (%) for different ISM ionization states. The graph includes data points for simulation cases (Not Merged and Merged) and observed LMC+SMC with ISM 90% ionized.](image-url)