Stochastic Stellar Feedback in Low-Mass Galaxies

Chris Power, ICRAR/UWA

with Lilian Garratt-Smithson, Mark Wilkinson, Graham Wynn (U Leicester), Martin Bourne (KICC Cambridge)

The Role of Gas in Galaxy Dynamics, Malta, October 2017
What do we mean by stochastic feedback?

• Conditions for massive stars capable of producing potentially disruptive feedback - *UV photo-ionization, strong winds, supernovae, X-ray binaries* - *not deterministic.*

• Effects most likely to be pronounced in low-mass galaxies, reflecting;
 • Inefficient star formation & **triggering by perturbations**.
 • Low masses of star forming regions & **random sampling of initial mass function** regulates numbers of massive stars.
 • **Inefficient stellar feedback** – sites of star formation biased towards central regions, sensitive to local conditions (e.g. gas density, cooling, radiation field, etc..)
 • Formation paths of binaries into energetic (high) mass **X-ray binaries** subject to **complex evolution**
What is the impact of stochastic feedback?

1. Low masses of star forming regions & random sampling of initial mass function regulates numbers of massive stars.

2. Inefficient stellar feedback – sites of star formation biased towards central regions, sensitive to local conditions (e.g. gas density, cooling, radiation field, etc.)

3. Formation paths of binaries into energetic (high) mass X-ray binaries subject to complex evolution

How does this stochasticity impact the abundance and star formation histories in low-mass galaxies?
• **Occupancy** of low-mass dark matter sub-haloes with satellite galaxies apparently **stochastic** (e.g. Boylan-Kolchin et al. 2011)
• Power et al 2014 - result of stochastic star formation and feedback?
Stochastic Feedback in Low-Mass Halos I

Essential Idea

- Binding energy of gas comparable to a single supernova in halo with 10^8-10^9 M_\odot
- Star formation proceeds in random order in molecular clouds.
- Pre-MS timescale varies as $M^{-2.5}$ – high mass stars form more rapidly than lower mass counterparts.
- How does this influence stellar population that forms...?

Credit: ESA/NASA

Power et al. 2014
Stochastic Feedback in Low-Mass Halos II

Power et al. 2014

Model

- Monte Carlo Merger Trees for distribution of progenitors of present-day low-mass halos.

 - $M_{\text{vir}}=10^{7.7}-10^{10} \, M_\odot$ at $z=0$

- When were they first massive enough to support cooling, i.e. $T_{\text{vir}} \sim 10^3-10^4$ K?

- Estimate binding energy of gas in halo progenitor, and energy liberated by supernovae, assuming stochastic high mass star formation.
More massive subhalos at $z=0$ support cooling earlier – feedback can have greater effect, but more time to re-accrete gas and form stars – effects of stochasticity more pronounced for lower mass subhalos.
Locally Regulated Feedback Efficiency I

Assumption: Stellar-driven outflows (winds, supernovae) sufficiently energetic to expel ambient gas from the galaxy.

Caveat: How outflow couples to ambient gas is as important as energy and momentum carried by the outflow.

Test: Use hydrodynamical simulations to explore coupling of stellar wind driven outflow from a nuclear star cluster couples to gas.

Feedback from multiple sources superposes, seeds dense clumps in the outflow, fraction of mass expelled lower than one might naively expect.
Locally Regulated Feedback Efficiency II

From Bourne & Power 2016

Problem: Multiple sources less efficient at clearing out gas from nuclear regions – seeds dense clumps robust to feedback – available to grow stars, grow central black hole?
Locally Regulated Feedback Efficiency III

From Bourne & Power 2016

Problem: Cooling efficiency will influence rapidity with which gas clumpiness is seeded – and therefore efficiency with which gas is expelled from the potential.
High Mass X-Ray Binaries (XRBs)

- Binary fraction for massive stars close to unity; some uncertain fraction survives to form high mass X-ray binaries (e.g. Sana et al. 2012).
- Compact object accretes from main sequence companion via wind capture or Roche Lobe Overflow.
- Accretion liberates energetic radiation with luminosity $L_{\text{acc}} = \eta \dot{M} c^2$

XRBs potentially important stochastic source of feedback?
HMXB Photo-Ionizing Feedback I

- Explore ionizing output – UV and X-ray - from a coeval stellar population as a function of
 - IMF (e.g. Kroupa, Chabrier)
 - HMXB survival fraction
 - HMXB spectra (hard to soft)

- Can extend photo-ionizing lifetime of star cluster up to >80 Myrs....

- ... but photo-ionizing feedback is non-local in nature.
Ionizing power depends on hardness of spectrum (Power et al. 2009) – power-law spectra usually assumed, but more realistic empirical spectra have quite different shape (Power et al. 2013). Energy available for ionization indicates importance...!
HMXB Kinetic Feedback I

- **Cygnus X-1** - stellar mass black hole fed by wind accretion.

- Gallo et al. 2005 - amount of energy in form of kinetic feedback (i.e. jet) as high as photo-ionizing feedback (i.e. X-ray luminosity).

- Expect outbursts to occur over an extended period of time.

Jet inflates a lobe that is over-pressured relative to its surroundings, driving a thermalising shock

Gallo et al. 2005
Hydrodynamic simulations to explore impact of kinetic feedback from HMXBs in addition to supernovae, in isolated star-forming clouds.

Run A: SNe + HMXB feedback, ICs: $2 \times 10^6 \, M_\odot$, 100pc, $a_{\text{vir}} = 0.7$, 50K

Run C: Just SNe feedback, ICs: $2 \times 10^6 \, M_\odot$, 100pc, $a_{\text{vir}} = 0.7$, 50K

Gradual injection of energy acts to open up chimneys, releases thermal pressure, alters star formation rate.
HMXB Kinetic Feedback III

- Inherently stochastic
- Single ULX outburst powerful enough to unbind gas in a dwarf galaxy

- **Location, location, location....**
 - Can sweep galaxy free of gas...
 - ... or triggers star formation.

Power & Bourne, In Prep
Summary

• Sound physical reasons to expect that effects of stochastic feedback should be especially important in low-mass galaxies.

• Not captured in current galaxy formation models – a physics and numerical resolution problem. Necessary to reconcile theory and observation?

• How energy couples to ambient gas can dramatically impact efficiency of gas explosion and influence subsequent star formation – very sensitive to local conditions

• Photo-ionization? Gas fraction? Instabilities?

• High mass X-ray binaries – whose formation is effectively stochastic - can release significant amounts of energy, providing non-local feedback and powerful kinetic outflows.

• Drive turbulence in gas rich galaxies at high redshift? Suppress collapse of gas onto low-mass halos?