Probing the efficiency of the AGN feedback in young radio sources: the case of PKS1934-63

Francesco Santoro
PhD student
santoro@astro.rug.nl

Raffaella Morganti
Clive Tadhunter
Marvin Rose

Francesco Santoro - santoro@astro.rug.nl
Probing the efficiency of the AGN feedback in young radio sources: the case of PKS1934-63

QUASAR mode

Rupke & Veilleux

Mrk 231

RADIO Mode

Mc Namara

Galaxy cluster MS 0735

Francesco Santoro - santoro@astro.rug.nl

Malta - The role of gas in Galaxy Dynamics - Oct 2017
Probing the efficiency of the AGN feedback in young radio sources: the case of PKS1934-63

Models require efficiencies \(\sim 5\text{-}10\% \)

AGN feedback & Star Formation Quenching

Models require efficiencies \(\sim 5\text{-}10\% \)

Fabian 1999; di Matteo et al. 2005; Springel et al. 2005

Silk, J. + 2012

Francesco Santoro - santoro@astro.rug.nl

Malta - The role of gas in Galaxy Dynamics - Oct 2017
Probing the efficiency of the AGN feedback in young radio sources: the case of PKS1934-63

- High Radio Power $P_{1.4\text{GHz}} > 10^{25} \text{ W/Hz}$
- Early evolutionary stages YOUNG age $10^2 - 10^5 \text{ yr}$
- Found in gas rich ETGs / merging systems
- Hosting atomic, ionised, molecular gas extreme outflows

OUR SAMPLE
PKS0023-26, PKS0252-71
PKS1814-63, PKS2135-209, 3C 459
PKS1934-63

X-Shooter
slit spectroscopy
UVB + VIS + NIR
Probing the efficiency of the AGN feedback in young radio sources: the case of PKS1934-63

- $z = 0.1824$
- Radio age $\sim 1.6 \times 10^3$ yr
- Very Compact $D_{\text{radio}} \sim 130$ pc
- Very Powerful $P_{1.4\text{GHz}} = 10^{27.2}$ W/Hz

Merging

Roche+2016

Ramos Almeida+2011

Tziomis+2002

X-Shooter
4 KINEMATICAL COMPONENTS

2 Narrow

1 Broad

1 Very Broad component
4 KINEMATICAL COMPONENTS

2 Narrow
1 Broad
1 Very Broad component

OUTFLOWING GAS
[OIII] line

4 KINEMATICAL COMPONENTS

2 Narrow

1 Broad

1 Very Broad component

OUTFLOWING GAS

Main Goal
mass outflow rate
kinetic power
efficiency

Francesco Santoro - santoro@astro.rug.nl
Malta - The role of gas in Galaxy Dynamics - Oct 2017
Models require efficiencies ~5-10% for AGN feedback & Star Formation Quenching.
Mass outflow rate

\[\dot{M} \propto \frac{L(H\beta)}{N_e R_{out}} V_{out} \]

- H\(\beta\) Luminosity
- Gas electron density
- Outflow Velocity
- Outflow Radius

Francesco Santoro - santoro@astro.rug.nl
Outflow Velocity V_{out}

from the kinematical model

$V_{\text{out}} = -325$ km/s
FWHM = 2090 km/s

$v_{\text{max}} = -2500$ km/s

N_e

Francesco Santoro - santoro@astro.rug.nl
Malta - The role of gas in Galaxy Dynamics - Oct 2017
The outflow is COMPACT spatially unresolved

\(R_{\text{out}} < 1 \text{Kpc} \)

\(R_{\text{out}} > 65 \text{ pc} \)

from radio lobes separation

\(L(\text{H}\beta) \)

\(\text{N}_e \)

Francesco Santoro - santoro@astro.rug.nl
Gas electron density

Francesco Santoro - santoro@astro.rug.nl

Malta - The role of gas in Galaxy Dynamics - Oct 2017
Trans-auroral lines method (Holt et al. (2011))

N_e

Gas electron density

Francesco Santoro - santoro@astro.rug.nl

Malta - The role of gas in Galaxy Dynamics - Oct 2017
Fit of the lines with the [OIII]5007Å model

N_e

Gas electron density
AGN photoionization models

FIX
spectral index and
photoionisation
parameter
AGN photoionization models

Fix spectral index and photoionisation parameter

Vary density and reddening

Gas electron density
Gas electron density

Narrow components $N_e \sim 10^3 \text{ cm}^{-3}$

Broad component $N_e \sim 10^{4.5} \text{ cm}^{-3}$

Very broad component $N_e \sim 10^{5.5} \text{ cm}^{-3}$

Francesco Santoro - santoro@astro.rug.nl

Malta - The role of gas in Galaxy Dynamics - Oct 2017
mass outflow rate \(\dot{M} \propto \frac{L(H\beta)}{N_e R_{out}} V_{out} \)

- \(L(H\beta) \): H\(\beta\) Luminosity
- \(N_e \): Gas electron density
- \(R_{out} \): Outflow Radius
- \(V_{out} \): Outflow Velocity

Very broad component
mass outflow rates

kinetic power

efficiency

\[E \sim M \left(v_{\text{out}}^2 + \text{FWHM}^2 \right) \]

\[\frac{E}{L_{\text{bol}}} \]

\[L_{\text{bol}} \sim 1.5 \times 10^{45} \text{ erg/s} \]

from \(L[\text{OIII}] \)
$0.02 \, M_{\odot}/yr < \dot{M} < 0.19 \, M_{\odot}/yr$

$5.5 \times 10^{40} \, \text{erg/s} < \dot{E} < 5.1 \times 10^{41} \, \text{erg/s}$

$3.5 \times 10^{-5} < \dot{E}/L_{\text{bol}} < 3.3 \times 10^{-4}$
$10^{-5} < \frac{E}{L_{\text{bol}}} < 10^{-4}$

5-10% for classical models

~0.5% 'multi-staged' outflows (e.g. Hopkins & Elvis 2010)

$10^{-5} - 10^{-4}$ - Kurosawa et al. (2009)

Are we missing outflowing gas? Is it a multiphase outflow?

0.01 < M < 3 M_\odot/yr

$10^{-4} < \frac{E}{L_{\text{bol}}} < 1.5$

Francesco Santoro - santoro@astro.rug.nl

Malta - The role of gas in Galaxy Dynamics - Oct 2017
multiphase outflow

NIR - H2 warm ionised gas
multiphase outflow

Ionised gas
compact outflow

atomic &
warm
molecular gas
no evident sign of
outflow

Is PKS 1934-63 too young?
multiphase outflow
... a possible scenario ...

AGN - ISM interaction ionise the gas

Cold gas forms in post-shock cooling regions
multiphase outflow

... a possible scenario ...

AGN - ISM interaction ionise the gas

Cold gas forms in post-shock cooling regions

Francesco Santoro - santoro@astro.rug.nl

Malta - The role of gas in Galaxy Dynamics - Oct 2017
multiphase outflow

... a possible scenario ...

SIMULATION

H2 and CO start to form ~10^5 yr after the start of the AGN-ISM interaction (Richings & Faucher-Giguere 2017)

COMPACT RADIO SOURCES (ages 10^{2-5} yr) can be used to test the scenario
COMPACT RADIO SOURCES (ages 10^{2-5} yr) can be used to test the scenario of multiphase outflow.
multiphase outflow

COMPACT RADIO SOURCES (ages 10^{2-5} yr) can be used to test the scenario

PKS 1934-63 might be too young to have a cold gas outflow
Take home messages

Density is a crucial parameter to characterise outflows.

Observed outflow efficiencies are far from the 5-10% required by classical models.

Compact radio sources can test if time is the main driver to explain the multiphase outflow properties.

More results from the rest of the sample.